
Learning Sparse Overcomplete Word Vectors
Without Intermediate Dense Representations

Yunchuan Chen1,2, Ge Li1,3(B), and Zhi Jin1,3(B)

1 Key Laboratory of High Confidence Software Technologies,
Peking University, Beijing, China

chenyunchuan11@mails.ucas.ac.cn, {lige,zhijin}@pku.edu.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Institute of Software, Peking University, Beijing, China

Abstract. Dense word representation models have attracted a lot
of interest for their promising performances in various natural lan-
guage processing (NLP) tasks. However, dense word vectors are unin-
terpretable, inseparable, and time and space consuming. We propose
a model to learn sparse word representations directly from the plain
text, rather than most existing methods that learn sparse vectors from
intermediate dense word embeddings. Additionally, we design an effi-
cient algorithm based on noise-contrastive estimation (NCE) to train the
model. Moreover, a clustering-based adaptive updating scheme for noise
distributions is introduced for effective learning when NCE is applied.
Experimental results show that the resulting sparse word vectors are
comparable to dense vectors on the word analogy tasks. Our models
outperform dense word vectors on the word similarity tasks. The sparse
word vectors are much more interpretable, according to the sparse vector
visualization and the word intruder identification experiments.

1 Introduction

Word representation learning is aimed at associating each word with a syntacti-
cally and semantically rich feature vector. The learned word vectors could serve
as input features for higher-level algorithms in NLP applications. Based on the
distributional hypothesis [11], a variety of methods have been proposed in the
NLP community, such as clustering-based methods [1], matrix-based methods
[13,15], and neural network-based methods [3,17]. Recently, neural network-
based methods have dominated word representation learning because of their
effectiveness in a variety of natural language processing (NLP) tasks, such as
part-of-speech tagging, semantic role labeling [3], parsing [26], sentiment analysis
[27], language modeling [28], paraphrase detection [5] and dialogue analysis [12].
Neural network-based methods often represent words with dense, real-valued
vectors.

However, dense representations are often criticized on their interpretability,
separability, and complexity aspects. For neural network induced word vectors,

c© Springer International Publishing AG 2017
G. Li et al. (Eds.): KSEM 2017, LNAI 10412, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-63558-3 1



4 Y. Chen et al.

we do not know what feature is represented by each dimension, which corre-
sponds to an implicit feature. There are complex dependencies between these
underlying implicit features and human interpretable features such as noun,
adjective, plural or singular, etc. It is therefore difficult to understand how a
word vector-based computational model works. In addition, dense word vec-
tors go against some widely believed properties a good high-level representation
should have. For example, it is thought features should be represented in a sep-
arable way, or related to each other through simple dependencies [8], but dense
word vectors are generally not separable. In addition, it usually results in high
time or space complexity models when applied in downstream NLP tasks.

Sparse representation is considered as a potential choice for interpretable
word representations and can be used to design time and space efficient algo-
rithms for downstream NLP tasks. In the image, speech, or signal processing
field, sparse overcomplete representations have been widely used as a way to
improve separability and interpretability [4,21,25], and to increase stability in
the presence of noise [4]. In NLP, sparsity constraints are useful in various appli-
cations, such as POS-tagging [30], dependency parsing [16] and document clas-
sification [32]. It has been shown that imposing sparse Dirichlet priors in Latent
Dirichlet Allocation (LDA) is useful for downstream NLP tasks like POS-tagging
[30], and improves interpretability [23]. Experiments show that the gathered
descriptions for a given word are typically limited to approximately 20–30 fea-
tures in norming studies [31].

In this paper, we propose a new, principled sparse representation method that
learns sparse overcomplete word representations directly from the raw unlabeled
text. We also design an easy-to-parallelize algorithm, which is based on noise-
contrastive estimation (NCE) to train our proposed model. Additionally, we pro-
pose a clustering-based adaptive updating scheme for noise distributions used by
NCE for effective learning. This updating scheme makes the noise distributions
approximate the data distribution, and thus pushes the learning improves with
fewer noise samples.

We evaluate our model on the word analogy, word similarity, and word intru-
sion tasks. The first two tasks are used to examine the expressive power of the
learned representations and the last task is for interpretability. On the word
analogy task, the results show that our proposed sparse model can achieve com-
petitive performance with the state-of-the-art models under the same settings.
On the word similarity task, the proposed model outperforms the competitors.
For the interpretability, experimental results demonstrate that the sparse word
vectors are much more interpretable.

2 Related Work

Learning sparse word vectors is booming along with dense vector representations.
We put the existing sparse word vector learning methods into two categories:
matrix-based methods and neural network-based methods.

The matrix-based methods can be divided into two steps. The first step is to
construct a co-occurrence matrix M of size V × C, where V is the vocabulary



Learning Sparse Overcomplete Word Vectors 5

size and C is the context size. The w-th row Mw,: is the initial representation
of the w-th word. The second step is to apply a dimension reduction method to
map M to a sparse matrix M ′ of size V ×d, where d � C. For example, Murphy
et al. (2012) improved the interpretability of word vectors by introducing sparse
and non-negative constrains into matrix factorization [20]. Levy and Goldberg
(2014) showed that the sparse word vectors of word-context co-occurrence PPMI
statistics also possess linguistic regularities that present in dense neural embed-
dings [14].

The neural network-based methods usually transforms dense neural embed-
dings into sparse ones. These methods generally require two steps of learning
procedures. The first step is to train an embedding model, such as CBoW,
SkipGram [17] and GloVe [24] to obtain dense feature vectors of the words in
the vocabulary. The second step is to learn the sparse representation of each word
by fixing the dense word embeddings. For example, Faruqui et al. (2015) trans-
formed dense word vectors into sparse representations using dictionary learning
method and showed the resulting sparse vectors are more similar to the inter-
pretable features typically used in NLP [6]. Chen et al. (2016) proposed to use
sparse linear combination of common words to represent uncommon ones, which
results in sparse representation of words that is effective of compressing neural
language models.

In summary, it is tricky to construct the co-occurrence matrix and design the
dimension reduction algorithm to obtain good sparse word vectors. For neural
network-based methods, the two-step pipelines may lose the sparse structure of
words. This is because the prior that each word has a sparse structure is not
imposed to learn dense embeddings, which could potentially lose the informa-
tion for the sparse vector learning. Hence, it is preferred to learn sparse vectors
without intermediate dense word embeddings like the method Sun et al. (2016)
proposed [29]. The method Sun et al. proposed does not learn overcomplete
sparse word vectors.

3 Our Model

In this section, we will talk about a model that try to discover the fundamental
elements that constitute each word. We call these fundamental elements word
atoms. Word atoms and words are analogs to atoms and molecules in Chem-
istry, respectively. The types of atoms are very small, but they can make up a
huge number of different molecules. Likewise, we expect the limited word atoms
could represent a large number of words in the vocabulary. A word atom can be
regarded as an indivisible semantic or syntactic object.

The design philosophy of our model is similar to that of SkipGram, i.e.,
“good representations result in good performances to predict context words”. In
addition, we assume that each word is composed of a few word atoms. In detail,
each word is assumed to be represented by a sparse, linear combination of word
atoms’ vectors. This assumption is similar to but different from Chen et al.’s
[2], which assume that each uncommon word is represented by a sparse, linear



6 Y. Chen et al.

combination of the common ones. A word should not have too many semantic
or syntactic components, so the sparseness assumption is reasonable.

Before introducing the mathematical model of representing words, we
describe briefly the denotations. Let the vocabulary V = {w1, w2, . . . , wn}, con-
texts C = {c1, c2, . . . , cn′}. Each column of B ∈ R

d×nb , and C ∈ R
d×nc are

word and context atoms, respectively.1 nb and nc are the number of word and
context atoms, respectively; d is the dimension of atom vectors. For any given
word w ∈ V, its vector representation is w = Bα, where α, called the sparse
representation of w, is the coefficients that are used to combine word atoms to
make up the word. Similarly, for a context c ∈ C, its vector representation is
c = Cβ, where β is the sparse representation of c.

We think good word representations are helpful to predict a word’s sur-
rounding context words. The softmax model is used to model the distribution
of a word’s surrounding contexts.

p(c | w) =
exp(w�c)

∑
c′∈C exp(w�c′)

=
exp(α�B�Cβ)

∑
j exp(α�B�Cβj)

. (1)

The word-context pair (w, c) is drawing from plain text. Concretely, for input
plain text that consists of N words w1, w2, . . . , wN , the word-context pair
(wi, wj) is drawn such that |j − i| < �/2, where � is the window size.

It is difficult to train model (1) with the maximum likelihood estimation
because of the difficulty of computing the normalization constant (a.k.a. parti-
tion function) for each word. In the literature, there are several methods to con-
front the partition function of a single distribution, such as MCMC-based algo-
rithms, pseudo-likelihood, (denoising) score matching, Noise-Contrastive Esti-
mation (NCE) [10]. But not all of these methods can be applied to discrete-input
models like (1).

3.1 Parameter Estimation

We will adopt NCE to train model (1). The basic idea of NCE is to train a logistic
regression classifier to discriminate between samples from the data distribution
and samples from some “noise” distributions. It is a parameter estimation tech-
nique that is asymptotically unbiased and is suitable to estimate the parameters
of a model with few number of random variables [8]. And it is also applicable
to discrete-input models. One issue to apply NCE to train model (1) is that
our model is a series of distributions that share the same parameters, which
does not accommodate to NCE’s setting. Following the work using NCE to train
neural language models [2,19] and word embeddings [18], we define the training
objective as the expectation of all distributions’ NCE objective functions.

1 The same as a word is composed of word atoms, we also assume that a context is
composed of context atoms. In this paper, we will use surrounding words as contexts
and thus V = C. The number of word and context atoms are also set to be equal,
i.e., nb = nc.



Learning Sparse Overcomplete Word Vectors 7

In our situation, where the number of estimated conditional distributions is
fairly small, we could learn a parameter corresponds to the partition function of
each conditional distribution following the standard procedures NCE suggested
to handle unnormalized probabilities [10]. Denote these parameters as a vector
z = (z1, z2, . . . , zV ). Suppose to draw k negative instances per positive instance.
Taking the sparseness requirement on the parameter α and β into consideration,
the resulting parameter estimation model for (1) is

arg max
θ

J(θ) − λh(Sα,Sβ), (2)

where θ = {B,C,Sα,Sβ , z}, Sα = (α1,α2, . . . ,αV ), Sβ = (β1,β2, . . . ,βV )
and

J(θ) =
∑

(wi,ci,si)∈D
ln

(
1 − si

2
+ siσk(α�

i B�Cβi + zwi
− ln pn(wi))

)

,

h(Sα,Sβ) =
|V|∑

j=1

(‖αj‖1 + ‖βj‖1),

where σk(x) = 1/(1 + k · exp(−x)) is the logistic function parameterized by k;
zwi

is a parameter corresponds to the partition function of distribution p(· | wi);
si = +1 and −1 is a variable indicates whether the corresponding instance is
extracted from the corpus (namely, positive instances) or drawn from a noise
distribution (namely, negative instances); D is the training dataset, including
positive and negative instances; λ is a hyperparameter used to control the degree
of sparseness of Sα and Sβ .

The first term of the optimization problem (2), i.e., J(θ), is derived from
applying NCE to model (1). The second term—which is a �1 regularization—
encourages sparse solutions for α and β.

Because our goal is not to obtain an accurate prediction model but rather
the vector representations of the word atoms and the sparse codes, following
Mikolov et al.’s suggestion in [17], we adopt a simplified version of NCE, which
called “negative sampling (NS)” to learn word representations. This is done by
redefine the first term of model (2) as

J(θ) =
∑

(wi,ci,si)∈D
log σ(siα

�
i B�Cβi),

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function.
Denote model (2) as SpVec ignoring the concrete definition of J(θ). We

use a suffix to indicate which training algorithm is applied: when NCE (NS) is
used, we call the model SpVec-nce (SpVec-ns). Note that the SpVec model
has two sets of word representations: one for target words and one for context
words, which is the same as SkipGram. For SkipGram, the word analogy test
experiments show that target word embeddings and context word embeddings
have similar structures: both embeddings encode the relationship between words



8 Y. Chen et al.

by the difference of corresponding words. Additionally, the sparse representation
of words is a description of the structure of a word: it determines how a word is
composed from word atoms. Therefore, a natural question is that: is it possible
to enforce the words and contexts to have the same sparse representations? This
can be done by setting Sα and Sβ to share an identical parameter set, which
introduces another variant of SpVec. We denote it with a prefix: s-SpVec,
which means the sparse vectors are shared.

Both NS and NCE require some noise distributions to draw negative
instances. When NS is used, an identical distribution pn(w) ∝ #(w)0.75 is used.
When NCE is used, dynamic distributions are used to draw negative instances,
which is inspired by self-contrastive estimation (SCE) [9]. According to the the-
ory of NCE, this estimation method can learn effectively when the negative
samples are drawing from a distribution similar to the data distribution. The
model is approaching the data distribution along with the training. The SCE
therefore suggest to copy the trained model as new noise distributions during
training. But it is intractable in our scenario, where there are V multinomial
distributions, each of which has V parameters to describe. To make it tractable,
we apply a clustering method to group the distributions and compute a delegate
noise distribution for each group. Concretely, we use M distributions that are
updated after every 5% of progress using the following three steps.

1. Compute the dense words and contexts embeddings: U = BSα, V = CSβ .
2. Apply k-means to cluster word embeddings into M classes.
3. Specify a distribution for every cluster X using the following formula.

PX (c = i) =

[
∑

w∈X

p̂d(w)
∑

w′∈X p̂d(w′)
softmax(V �w)

]

i

,

where p̂d is the word frequency distribution; softmax(y) = exp(y)/
∑

i

exp(yi).

The cluster dependent noise distributions have the property that for any w ∈ X ,
pX (c) ≈ p(c | w). In principle, other clustering methods could also be applied
instead of k-means. The k-means clustering method is satisfactory in our
experiments.

3.2 Optimization Algorithm

In this subsection, we introduce an easy-to-parallelize algorithm to train SpVec.
This algorithm is based on Stochastic Proximal Gradient Descent (SPGD)
[22]. Take SpVec-ns as an example.2 Define the per-instance loss function as
f = − log σ(sα�B�Cβ). Suppose the gradients of per-instance loss w.r.t all
parameters are obtained, the parameters are updated by the following formulas.

2 SpVec-nce’s learning algorithm could be derived similarly.



Learning Sparse Overcomplete Word Vectors 9

α(t+1) = proxηth

(
α(t) − ηt

∂f

∂α

)
, β(t+1) = proxηth

(
β(t) − ηt

∂f

∂β

)
, (3)

B(t+1) = B(t) − ηt
∂f

∂B
, C(t+1) = C(t) − ηt

∂f

∂C
, (4)

where h(x ) = λ‖x‖1; ηt is the learning rate at the t-th step; proxg(x ) =
arg minu

(
g(u) + 1

2‖u − x‖22
)

is the proximal mapping. In detail,

(
proxηh(x )

)
i
=

⎧
⎪⎨

⎪⎩

xi − λη, xi > λη,

0, −λη ≤ xi ≤ λη,

xi + λη, xi < −λη.

However, it is inefficient to update the model for every training instance.
Therefore, we design an algorithm that updates parameters on mini-batches.
The core idea is to update the parameters based on the loss function defined on
mini-batches, which is carefully arranged so that the gradients can be expressed
by simple matrix-matrix products.

We represent a mini-batch using a vector w ∈ N
m and a matrix c ∈

N
(k+1)×m, where m is the size of mini-batches. The index vector w and the

first row of c (denoted by3 c1,:) form a set of positive instances, i.e., a pair
(wi, c1,i) is a positive instance. Similarly, w and ci,:, 1 < i ≤ k +1 form negative
instances. Denote4

s1,: = +1 s2:k+1,: = −1

ᾱ = (Sα):,w ∈ R
nb×m, β̄ = (Sβ):,c ∈ R

nc×(k+1)×m,

a = Bᾱ ∈ R
d×m, b = Cβ̄ ∈ R

d×(k+1)×m,

z :,j = b�
:,:,ja :,j , Σij = σ(sijzij),

γij = −sij(1 − Σij), Q = (β̄:,:,jγ:,j)j=1,2,...,m,

M = C�a , N = (b :,:,jγ:,j)j=1,2,...,m,

Redefine f as the loss on mini-batches f(ᾱ, β̄,B,C) = −∑k+1
i=1

∑m
j=1 log Σij .

We can prove

∂f

∂B
= Nᾱ�,

∂f

∂C
= aQ�, (5)

∂f

∂a
= N ,

∂f

∂ᾱ
=

∂a

∂ᾱ

∂f

∂a
= B�N , (6)

∂f

∂β̄:,:,j
= M:,jγ

�
:,j . (7)

In summery, the mini-batch SPGD is repeatedly applying Eqs. (5)–(7) to cal-
culate the gradients of parameters and using (3)–(4) to update the parameters.
3 We use index convention from Python except that indexes start with 1.
4 We define the product of a matrix A ∈ R

m×n and a 3-way tensor B ∈ R
n×p×q to

be a 3-way tensor C such that C :,i,j = AB :,i,j .



10 Y. Chen et al.

Note that there could be duplicated word or context index in w or c and dupli-
cated gradients w.r.t α and β should be combined before updating when the
program is running in parallel. All gradients are calculated by matrix products,
which means it is easy to leverage existing high performance algebra libraries to
parallelize the computations.

4 Evaluation

In this section, we will evaluate the resulting sparse representations on two
similarity-based tasks and investigate the interpretability of our SpVec model.

4.1 Experimental Settings

We use the English Wikipedia dump (July, 2014) as the corpus to train all the
models. After some preprocessing such as document extraction, markup remov-
ing, sentence splitting, tokenization, lowercasing and text normalization, the
plain text corpus contains about 1.6 billion running words.

The hyper parameters for SpVec are given as follows. The number of word
or context atoms is set to be 1024 and the dimension of these atom embeddings
is set to be 200. The �1 regularization penalty λ was set empirically such that
the overall sparsity of words exceeds 95% for all variants of SpVec. The size
of mini-batch is set to be 1024. The learning rate is dynamically updated using
formula α = α0−(α0−αend)g, where g ∈ [0, 1] is the training progress, the initial
learning rate α0 and the minimum learning rate αend are set to be 5 × 10−5 and
1×10−6, respectively. Following Mikolov et al.’s work [17], we use windows with
random sizes to draw positive instances and the largest distance between a target
word and a context word is 8. During training, we draw 8 negative instances for
each positive instance.

After training, we perform an extra operation to further increase the sparsity
of the sparse representations. This is done by setting the values that is less than a
small fraction of the largest element of the vector (in absolute sense) be zero, i.e.,
setting αi be 0 if |αi| < ξ · max{|αj | : 1 ≤ j ≤ nb}. In practice, ξ is set to be 0.05.

For SkipGram, CBoW and SC5, we train them using the released tools
on the same corpus with the same settings as our models if possible for fair
comparison. The first two models, which are implemented in the word2vec tool6

are both trained with negative sampling since NCE is not implemented in the
tool. The PPMI matrix is built based on the word-context co-occurrence counts
with window size as 8.

4.2 Word Analogy

The word analogy task can be used to evaluate models’ ability to encode linguis-
tic regularities between words, which is introduced by Mikolov et al. [17]. We
5 https://github.com/mfaruqui/sparse-coding.
6 https://github.com/dav/word2vec.

https://github.com/mfaruqui/sparse-coding
https://github.com/dav/word2vec


Learning Sparse Overcomplete Word Vectors 11

Table 1. Results of word analogy and word intrusion tasks. We report accuracy (%)
for word analogy task.

Model Dim. Sparsity DistRatio Google MSR

Sem. Syn. Total Adj. Nouns Verbs Total

SkipGram 200 0.0% 1.11 73.9 70.8 71.9 66.7 63.3 67.5 66.5

CBoW 200 0.0% 1.08 72.2 69.8 70.7 65.8 61.9 66.1 65.2

Sparse CBoWa 300 90.1% 1.39 73.2 67.5 70.1 - - - -

SC (SG)b 1024 94.3% 1.27 67.4 60.1 62.7 59.6 57.4 58.9 58.8

SC (CBoW)c 1024 93.6% 1.21 68.9 63.4 65.4 60.3 57.8 59.2 59.3

PPMI 60000 90.8% 1.31 74.0 40.3 52.3 38.2 35.5 37.7 37.4

SpVec-ns 1024 96.1% 1.44 70.8 68.1 69.1 63.4 60.0 64.7 63.3

SpVec-nce 1024 95.1% 1.46 69.5 68.5 68.9 64.1 62.3 64.4 63.9

s-SpVec-ns 1024 96.3% 1.47 70.5 68.7 69.3 65.2 63.1 64.8 64.6

s-SpVec-ncs 1024 96.5% 1.51 70.1 69.4 69.6 65.0 63.9 65.3 65.0
aThis line is adopted from [29].
bThe input matrix of SC is the 200d vectors of SkipGram in the first row.
c The input matrix of SC is the 200d vectors of CBoW in the second row.

use two word analogy test sets, namely, Google and MSR, both containing test
case like “run is to running as walk is to walking”. The Google dataset7 contains
19,544 analogy questions, which can be categorized into semantic and morpho-
syntactic related subsets [17]. The MSR dataset8 contains 8,000 analogy ques-
tions, categorized according to part-of-speech; all of them are morpho-syntactic.

This task is to predict the last word of the analogy questions, pretending it is
missing. Following Mikolov et al.’s work [17], for question “a is to b as c is to ”,
we apply d = arg maxd∈V\{a,b,c} cos(c−a +b,d) to fill the blank. Table 1 shows
the result on word analogy tasks. It shows that word analogy is more challenging
for sparse models. None of sparse models outperforms SkipGram or CBoW.
Nevertheless, SpVec models can achieve similar performance comparing with
SkipGram or CBoW. We also find that all variants of SpVec have similar
performance on this task.

4.3 Word Similarity

One important indicator to assess the quality of word representations is the clus-
tering property—similar words should have similar vectors. We use WordSim353
dataset [7] to investigate the similarity aspect of the resulting word vectors. This
dataset contains 353 word pairs along with their similarity/relatedness scores.
We use the sparse word vectors to retrieve and rank the most similar words. For
every word w in WordSim353, we rank its similar words by cosine similarities.

7 https://github.com/dav/word2vec/blob/master/data/questions-words.txt.
8 http://research.microsoft.com/en-us/projects/rnn/.

https://github.com/dav/word2vec/blob/master/data/questions-words.txt
http://research.microsoft.com/en-us/projects/rnn/


12 Y. Chen et al.

The ground truth of w’s similar words is a set U(w), which is a collection of all
the words in WordSim353 that the similarity score with w is higher than 0.6.

The recall-precision curve is depicted by Fig. 1. We expect SpVec’s curve to
be comparable to SC and higher than SkipGram’s, which in turn is expected
to be higher than PPMI. This means that the similarities induced by SpVec
models are more consistent with human cognitions.

Fig. 1. Recall-precision curve
when attempting to rank simi-
lar words above unsimilar ones

Fig. 2. Visualization of several selected words’ sparse
representation from s-SpVec-nce. Zeroes are white;
negative (positive) values are blue (red). (Color figure
online)

4.4 Interpretability

In this subsection, we talk about the interpretability of the learned sparse vec-
tors. We visualize 8 selected words’ sparse vectors from s-SpVec-nce in Fig. 2.
We find that similar words have similar sparse patterns and dissimilar words
possess different sparse codes. We also observe some interpretable patterns from
this figure. For example, the dimensions marked by arrows clearly relate to the
plural and singular aspects of words.

Following Sun et al.’s work [29], we evaluate the interpretability of our learned
sparse word vectors quantitatively by word intrusion task. The details of con-
struction test data for this task are described in [6,29]. Roughly, it sorts words
dimensionally and chooses the top 5 and an intruder word to form an instance.
An intruder word is a word from the bottom half of the sorted list that is in top
10% of a sorted list corresponds to another dimension.

We use DistRatio to measure the interpretability of word representations.
DistRatio is defined to be the average ratio of the distance ai to distance bi,
where ai is the average distance between the intruder word and top words for
the i-th instance; and bi is the average distance between the top words for the
i-th instance. This measure is first introduced by Sun et al. [29]. The higher the
ratio is, the stronger interpretability the representation possesses.

Table 1 presents the DistRatio of our models and their competing ones. It
shows that the interpretability of dense models is weak while sparse representa-
tions illustrate much stronger interpretability. This confirms that the sparse rep-
resentations are more interpretable than the dense ones. Moreover, the SpVec



Learning Sparse Overcomplete Word Vectors 13

variants outperform other sparse representation models significantly on the inter-
pretability aspect. Compared to SC, the reason might be that our method
directly learns the sparse word vectors from the data instead of transforming
pre-trained dense vectors to sparse codes that SC does, and thus can avoid the
information loss caused by the pipeline of learning sparse representations.

5 Conclusion

In this paper, we propose a method to learn sparse word vectors directly from the
plain text, which is based on two assumptions: (1) each word is composed of a few
fundamental elements and (2) good representations result in good performances
to predict context words. We also give an efficient and easy-to-parallelize algo-
rithm that based on NCE to train the proposed model. Additionally, a clustering-
based adaptive updating scheme for noise distributions is proposed for effective
learning when NCE is applied.

The experimental results on word analogy tasks show that the performance
loss due to imposing sparse structure on word representations is limited. On the
word similarity task, our models outperform dense representations like Skip-
Gram, which is considered to be a strong competitor. On the interpretability
aspect, the sparse representations are more interpretable than dense ones. The
experiments demonstrate the effectiveness of our learned sparse vectors in inter-
pretability.

Acknowledgement. This research is supported by the National Basic Research Pro-
gram of China (the 973 Program) under Grant No. 2015CB352201 and the National
Natural Science Foundation of China under Grant Nos. 61421091, 61232015 and
61502014.

References

1. Brown, P.F., Della Pietra, V.J., de Souza, P.V., Lai, J.C., Mercer, R.L.: Class-based
n-gram models of natural language. Comput. Linguist. 18(4), 467–479 (1992)

2. Chen, Y., Mou, L., Xu, Y., Li, G., Jin, Z.: Compressing neural language models
by sparse word representations. In: Proceedings of ACL (2016)

3. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

4. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete
representations in the presence of noise. IEEE Trans. Inf. Theory 52, 6–18 (2006)

5. Erk, K., Padó, S.: A structured vector space model for word meaning in context.
In: Proceedings of EMNLP, pp. 897–906, Morristown, NJ, USA (2008)

6. Faruqui, M., Tsvetkov, Y., Yogatama, D., Dyer, C., Smith, N.A.: Sparse overcom-
plete word vector representations. In: Proceedings of ACL, pp. 1491–1500 (2015)



14 Y. Chen et al.

7. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E.: Placing search in context: the concept revisited. ACM Trans. Inf.
Syst. 20(1), 116–131 (2002)

8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

9. Goodfellow, I.J.: On distinguishability criteria for estimating generative models.
arXiv, December 2014

10. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation of unnormalized sta-
tistical models, with applications to natural image statistics. J. Mach. Learn. Res.
13(1), 307–361 (2012)

11. Harris, Z.S.: Distributional structure. Word 10, 146–162 (1954)
12. Kalchbrenner, N., Blunsom, P.: Recurrent convolutional neural networks for dis-

course compositionality. arXiv.org, June 2013
13. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analy-

sis. Discourse Process. 25(2–3), 259–284 (1998)
14. Levy, O., Goldberg, Y.: Linguistic regularities in sparse and explicit word repre-

sentations. In: Conference on Natural Language Learning, pp. 171–180 (2014)
15. Lund, K., Burgess, C., Atchley, R.A.: Semantic and associative priming in high-

dimensional semantic space. In: Annual Conference of the Cognitive Science Soci-
ety, vol. 17, pp. 660–665 (1995)

16. Martins, A.F.T., Smith, N.A., Figueiredo, M.A.T., Aguiar, P.M.Q.: Structured
sparsity in structured prediction. In: Proceedings of EMNLP (2011)

17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: Computing Research Repository (2013)

18. Mnih, A., Kavukcuoglu, K.: Learning word embeddings efficiently with noise-
contrastive estimation. In: NIPS, pp. 2265–2273 (2013)

19. Mnih, A., Teh, Y.W.: A fast and simple algorithm for training neural probabilistic
language models. arXiv preprint arXiv:1206.6426 (2012)

20. Murphy, B., Talukdar, P.P., Mitchell, T.M.: Learning effective and interpretable
semantic models using non-negative sparse embedding. In: Proceedings of COL-
ING. ACL (2012)

21. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strat-
egy employed by v1? Vis. Res. 37(23), 3311–3325 (1997)

22. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends R© Optim. 1(3), 127–239
(2014)

23. Paul, M., Dredze, M.: Factorial LDA: sparse multi-dimensional text models. In:
Advances in Neural Information Processing (2012)

24. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Proceedings of ACL (2014)

25. Sivaram, G.S.V.S., Nemala, S.K., Elhilali, M., Tran, T.D., Hermansky, H.: Sparse
coding for speech recognition. In: ICASSP, pp. 4346–4349 (2010)

26. Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vector
grammars. In: Proceedings of ACL (2013)

27. Socher, R., Chen, D., Manning, C.D.: Reasoning with neural tensor networks for
knowledge base completion. In: NIPS (2013)

28. Soutner, D., Müller, L.: Continuous distributed representations of words as input
of LSTM network language model. In: Sojka, P., Horák, A., Kopeček, I., Pala, K.
(eds.) TSD 2014. LNCS, vol. 8655, pp. 150–157. Springer, Cham (2014). doi:10.
1007/978-3-319-10816-2 19

http://arxiv.org/abs/org
http://arxiv.org/abs/1206.6426
http://dx.doi.org/10.1007/978-3-319-10816-2_19
http://dx.doi.org/10.1007/978-3-319-10816-2_19


Learning Sparse Overcomplete Word Vectors 15

29. Sun, F., Guo, J., Lan, Y., Xu, J., Cheng, X.: Sparse word embeddings using �1 reg-
ularized online learning. In: Proceedings of the 25th International Joint Conference
on Artificial Intelligence, New York, USA, pp. 959–966 (2016)

30. Toutanova, K., Johnson, M.: A Bayesian LDA-based model for semi-supervised
part-of-speech tagging. In: NIPS (2007)

31. Vinson, D.P., Vigliocco, G.: Semantic feature production norms for a large set of
objects and events. Behav. Res. Methods 40(1), 183–190 (2008)

32. Yogatama, D., Smith, N.A.: Linguistic structured sparsity in text categorization.
In: Proceedings of ACL (2014)


	Learning Sparse Overcomplete Word Vectors Without Intermediate Dense Representations
	1 Introduction
	2 Related Work
	3 Our Model
	3.1 Parameter Estimation
	3.2 Optimization Algorithm

	4 Evaluation
	4.1 Experimental Settings
	4.2 Word Analogy
	4.3 Word Similarity
	4.4 Interpretability

	5 Conclusion
	References




